J. APPL. MECH. TECH. PHYS., NUMBER 4
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Obtaining a solution of the equations of a beam satisfying certain
conditions at the emitter is, as is known, only part of the problem.
Any such solution determines the flow in an unbounded region, where-
as actual beams have finite dimensions. To realize the flow described
by the solution obtained, we must consider the problem of a system
of focusing electrodes capable of producing a beam of given confi-
guration. The solution of this problem reduces to the problem of
apalytic continuation of the potential given at the beam boundary
together with its normal derivative into the charge-free region, i.e.,
o the Cauchy problem for the Laplace equation., The problem was
first formulated and solved in [1] in relation to a space-charge beam.
Inn [2~4], the concepts of [1] were generalized to the case of plane
curved trajectories. The mathematical bases of the method of elec-
trostatic focusing were considered in [5] (problems of existence,
uniqueness, and correctness). For a number of flows, a solution was
obtained in terms of contour integrals which are very difficult to
evaluate [6]. In[7], an analytic solution of the problem of the for-
mation of arbitrary axially symmetric beams is given, Transition to
the complex dornain and transformation of the Laplace equation to
hyperbolic form made it possible to give the solution in a form more
convenient for obtaining final results. Only a few analytic solutions
in elementary functions and closed form are known for the problem
of focusing stationary flows [[1, 4, 8=15] (plane diode [1, 13, 15], plane
magnetron [4, 8, 8], hyperbolic [10] and elliptic [11, 12] beams, flow
along circles and spirals in some nonuniform magnetic fields [141).

In {16] electrodes were determined for several nonstationary beams.
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Reference [17] is a study of the modes which may exist for mono~
energetic nonrelativistic flows of particles of like charge between
paraliel planes. In [15] the problem of focusing a ribbon beam is
solved for arbitrary conditions at the emitter and a monotonely chang-
ing potential, Below, we consider the case (case C in the terminology
of [147) when the potential between the electrodes has an extremum
(a minimum for electrons) (§ 1). The exact solution is compared with
the approximate one given in [18]. § 2 shows how the results of the
preceding section can be used to obtain an exact analytic solution of
the problem of periodically focusing a ribbon beam [19, 20]. The re-
sults of § 2 are compared with references [20, 21], in which an approx=-
imate solution of the problem is given,

§1. Let us consider the case when the potential has
an extremum. We shall assume that ¢, is the emitter
potential at x = 0 and that the velocity there is equal to
(- 27;@1)1/2. Going over to the dimensionless variables

x%, ¢, measuring lengths along the x axis in units of a,
and referring the potential to ¢y, we have
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We consider a to represent the distance at which (in
accordance with the Child-Langmuir solution) the po-
tential difference 6¢ = ¢; induces a current of density
jg; m is the charge-to-mass ratio-of the particle. In
this case, the solution of the beam equations in dimen-
sionless variables (the symbol of nondimensionality is
omitted) is given by [17]

z = (¢ 4 20%) Vg — o (1 4 200 VT — o' (1.1)

The minus sign in expression (1.1) holds for the in-
terval 1 = ¢ = «, 0 € x < 0; the plus sign holds for
¢ 2 a,x20; here o = ¢ (0) = ¢yin. The type-C po-
tential distribution ¢ = ¢ (x) is shown in Fig. 1 for
various values of a.

We shall assume that the charges occupy the region
x 2 0, y < 0. In order to obtain the equations of the
focusing electrodes, we replace x by z = x + iy in (1.1)
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and represent ¢ in the form ¢ = ® +i¥. Then, sepa-
rating the real and imaginary parts, we arrive at an

expression of the form
z =z (0, Y; a), y=y (@ ¥;0),

Setting ® = ¢, we obtain the parametric equation of
the electrode with potential & = &:

z =z (D, ¥; 0), y =y (@, ¥;a).
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For the flow described by (1.1), the equipotential
surfaces in the region outside the beam are given by
the equations

z—(1+20m YT —dh=2—c=

— 7 2| (VR T O + 20 VR VIR0 ©)— o —
VTGOV RV e+ O +at]s (12
y =2 (BT O +24) VE=VIRCF ) + o+
FVEC=O B VLo 10— o )
e VTTW, RV VEGIOta-

For ¥ — = formulas (1.2) yield the following ex-
pressions for x and y:

s—s=F RV TT 0 VZ-VI—,V3) ¥
y=1 (VI V2 + V17, V2) k.
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Thus, the straight lines y = (1 + V2) (x — o) ap-
proaching the beam boundary at an angle of 67.5° are
asymptotes of the family of equipotential curves & =
= const. Remembering that the zero value for the pa-
rameter ¥ corresponds to the beam boundary at y = 0,
we see that all electrodes with potential ¢ > o approach
it at right angles, since for small ¥

z = A+ p¥e, y =v¥.

(A, W, v = const}

For ¢ = ¢ and small ¥, Egs, (1.2) yield*

g—6=TFahV¥;
Y= 3/2 o'l V‘\T’ .

Consequently, the equipotential surfaces & = o form
an angle of 45° with the beam boundary. Figure 2 is a
diagram of the electrode with minimum potential ¢ =a.
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Since the potential ¢ (x) is symmetric with respect
to the nonsingular point x = ¢ in the interval 0 € x < 20
for electrodes with potential & < «, we have

dy/dx-—:O for z=0 O®Ola,

When a virtual emitter (¢ = 0) is created between
the electrodes and the current is partially reflected
[17], on both sides of x = g, the electrodes coincide
with those determined in {1]. The point x = ¢ is a sin-
gular point (d%¢/dx"|, - ; =%, n=2,3....) and, upon
analytic continuation of the potential, generates the
line x = o on which & and 8®/9x experience a disconti-
nuity.

Curves & = const (solid curves) are represented in
Figs. 3—6 for various values of a. The equipotential
surfaces ¢ € ® < 1at 0 < x< o are obtained from the
reflection of the surfaces @ < & < 1 at x = a about the
y axis.

*Foru; = 0, &, =0 (case 2 of [15]), x and y behave
in exactly the same way at small ¥; therefore the
curve ® = 0 (Fig. 6) approaches the beam boundary
at an angle of 45° and not 90°.
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Thus, for nonzero velocity and field at the emitter
uy, €4 * 0 and emission limited by temperature uy = 0,
£y = 0 [13, 15], the zero equipotential approaches the
beam boundary at right angles; for u; # 0, g, =0 (or
minimum potential) at an angle of 45°; and for u; = g; =
= 0 at an angle of 67.5° [1]. There is no continuous de-
pendence of the slope of the zero equipotential on ug, &;.

It can be shown, as in [5] for an angle of 67.5°, that
45° and 90° angles are characteristic not only of a
plane diode but also of emission from an arbitrary
surface. The discrete dependence of the slope o, of
the zero equipotential on uy, £y is retained even at
relativistic velocities despite the statement in [22]
that there is a continuous variation of #; with change
in collector potential.

Reference [18] gives an approximate solution of the problem in
question for the case of a potential minimum in the middle of the
interelectrode space. It is based on the approximation of the poten-
tial at the beam boundary by a parabola; for o > 0. 71 the error is no
greater than 0, 5%. The central electrode proved to be a plane
approaching the beam boundary at an angle of 45°,
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Figure 7 gives curves = o in x — g, y coordinates for different
a. It is clear that the difference between the exact solution and the
approximate one y, = X — o quickly becomes noticeable. To com-
pare these solutions for o = 0.8, we present values of =1= yu/y,
where y, is the approximate, and y the exacr value of the electrode
ordinate, computed for several values of x — o :

c — 5 = U142 0,283 0.6

0,446 0.545 1.07 165 2.1
o, v = 0175 0377 0.585 1.4 1 12.4

17.3.

The central electrode & = 0.8 is determined with the same accu-
1acy as the potential at the beam boundary for x ~ ¢ < 0.3,

As is known, the Cauchy problem for the Laplace equation is
incorrect: a small perturbation in the initial conditions at the bound-
ary causes a change in the solution that increases without bound with
distance from the boundary [5, 23, 24]. This instability makes it
difficult to perform numerical integration and seek a solution by
expanding the initial conditions in series or assigning them approxi~
mately [25~27]. Reference [25] deals with the case when the potential
at the boundary ¢ = (1 + xhtis approximated with an error not great-
er than 1. 5% by a tenth-degree polynomial. A comparison of the
approximate and exact solutions of the Cauchy problem reveais a
very large difference between the two families of equipotentials; the
cxact solution has a singular point (0, 1) which, naturally, is not
preserved in the indicated approximation. The branch point that
appears in the approximate solution is absent in the exact solution.

It is shown in [26] that the equipotential surfaces determined using

three and six terms of the expansion differ greatly. In [28] a numeri-
cal method for solving the Pierce problem is proposed, in which the
Laplace equation is written in finite differences. In [27] the calcula-
tions of [28] are repeated with a higher degree of accuracy and the
solution is found to oscillate strongly: as the step approaches zero,
the numerical solution approaches the exact one. In [29] the rate of
error increase is estimated and calculation methods which must be
stable are proposed. In [30] yet another reason, accounting, at least
in part, for the results of [27], is suggested: higher derivatives are
used in the solution in [28] whereas the value of the potential and

its normal derivative at the boundary uniquely derermines the solu~
tion in the entire region. The finite~difference method of integration
may be applied successfully if the Laplace equation is reduced to
hyperbolic type upon transition to the complex domain.
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The foregoing gives yet another example of the instability of the
solution for a problem practical interest.

In a number of studies [26, 33--38] the potential is expanded near
the beam boundary in power series. In view of the nonlinearity of the
beam equations it is not possible to prove that these series converge
absolately. Therefore, to construct a solution in this region with a
given accuracy is likewise not possible [5]. In obtaining solutions by
this method, one should remember that they are close to the exact
solution only in the immediate neighborhood of the beam boundary.

§2. The results of the preceding section can be
used for the exact analytic solution of the problem of
periodic focusing of a ribbon beam [19—21]. The po-
tential distribution within the interval 2ko = x = 2 x
x(k+1)o(k=0,1, ...)is given by Egs. (1.1), where
@ (0) = ¢ (20) = 1 and ¢ (0} = & (Fig. 1). The disconti-
nuity in d¢/dx at the ends of each interval requires the
presence in the beam of grids at a potential equal to 1.
A particular case of the problem of §1 is the determi-
nation of the electrodes for one of the elements of a
periodic focusing system 2ko < x < 2(k + 1)o. It re-
mains to investigate the coupling of two such elements,
since the solution in §1 is not periodic.
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A similar situation exists in the problem of focusing an arbitrary
number of parallel ribbon beams. References [5, 39] show that a
solution ¢ = & (X, y), continuous togerher with its first derivarives,
may not exist in the region between two beams. 1n {5] this problem
is presented as an example of nonsatisfaction of the uniqueness theo-
rem for the case when the Cauchy conditions are given at a nonana-
lytic boundary. In [39] the proof is based on the fact that the analytic
continuation of the potential given at the houndary of one beam does
not necessarily coincide with the continuation of the potential from
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the boundary of the second beam; this leads to a physically inadmis-
sible mulrivalued solution. The impossibility of a continuous solution
also results from the following considerations. The potential & (x, )
will be continuous together with its derivatives if there exists a con-
formal mapping of the plane with one discarded pole onto the plane
with a system of such cuts. The potential distribution along the beam
boundaries must be invariant with respect to this mapping, since
both planes are physical planes. In determining the focusing electrodes
for plane curved trajectories [2, 4], this requirement was superfluous,
since the u, v plane obtained upon mapping the beam boundaries
onto the real axis v = 0 was an auxiliary plane and did not have phy-
sical significance. It is clear that a mapping satisfying the two for-
mulated requirements does not exist. To maintain two parallel beams
it is necessary to impart to the plane a charge of surface density paral-
lel to and equidistant from their boundaries.
1 80
%= 73 By ly=n
(2h is the distance between beams).
The problem of coupling the elements of a periodic focusing sys-
tem is solved in exactly the same way. Reference [20] gives an approx-
imate solution of the problem of periodic focusing. This solution is
based on the approximation of the potential at the beam boundary by
an expression, which in terms of the dimensionless variables used in
§ 1, takes the form

¢ =1— ({4 —a)cos (nz/ 25), (2.1

(im ¢ (z) = 0)

The corresponding approximate solution for the Laplace equation is
O (x, y)=1— (1 — a)cos(nz /2)ch (ny /25). (2.2)

The error involved in using expression (2. 1) instead of the exact
solution (1. 1) for o = 0. 25 does not exceed 3%. Representing the
potential by (2. 1) ensures that the solution is periodic. The curves
® (x, y) = const, determined by (2.2) are represented by dashes in
Figs. 3 and 6 for o= 0.2 and o = 0.8, It is clear that the electrodes
with potential ® = 1 are the planes x = 20. ’

In accordance with what has been said above, in the
exact solution the plane x - 20 must be a charged and
not an equipotential surface in order to have an exact
solution. The law of variation of the potential on this
plane is then given by the expressions

o= 2 (VTG 70 + 208) VR VIl 7 @) —a—
VT r—®)VR—V{r + ) + a]

y=2" VTl T0) + 209V R—VTo(r £ @) + o +-
FV =YV R+ Vi +D)—a®] . (2.3)

Curves & (y) given by (2.3) are shown in Fig. 8 for
different values of o. The surface charge density in
the plane x = 20 is

g=—2 (lim g(y) = 0) ,

T 20 Bx jx=00 t>00

where & is given by expressions (1.2).

The results represented in Figs. 3 and 6 make it possible to com-~
pare the exact and approximate solutions. It is clear that the dif-
ference between them increases as x approaches unity. Here, the
periodicity of the approximate solution artifically introduced in {20]
is operative. Figure 9 represents one possible method of periodic
focusing. The surface & = const < o are used as low-voltage elec-
trodes. The planes x = 2ko with variable potential, which shield one
electrode from another, may take the form of a dense grid, the
potential on which varies in accordance with expression (2. 3).

The approximate solution of [18] can also be used to construct a
periodic focusing system, as in [21]. In this case the high-voltage

electrode takes the form of a biconvex lens, which is not to be re-
commended owing to its thickness. Clearly, such electrodes will
introduce considerable perturbation not only at a distance from the
beamn but also at its boundary. Evidently, the exact sotution for pe~
riodic focusing of a cylindrical beam, which can be constructed on
the basis of the results of [5, 7], will also.differ considerably from the
approximate solution of [20]. Here, as above, the planes x = 2ko will
not be equipotential surfaces.
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